Month: September 2015

Who wants to go to Mars?


NASA Confirms Evidence That Liquid Water Flows on Today’s Mars
by Staff Writers
Pasadena CA (JPL) Sep 29, 2015

Dark, narrow streaks on Martian slopes such as these at Hale Crater are inferred to be formed by seasonal flow of water on contemporary Mars. The streaks are roughly the length of a football field. Image credit: NASA/JPL-Caltech/Univ. of Arizona 

New findings from NASA’s Mars Reconnaissance Orbiter (MRO) provide the strongest evidence yet that liquid water flows intermittently on present-day Mars.

Using an imaging spectrometer on MRO, researchers detected signatures of hydrated minerals on slopes where mysterious streaks are seen on the Red Planet. These darkish streaks appear to ebb and flow over time. They darken and appear to flow down steep slopes during warm seasons, and then fade in cooler seasons. They appear in several locations on Mars when temperatures are above minus 10 degrees Fahrenheit (minus 23 Celsius), and disappear at colder times.

“Our quest on Mars has been to ‘follow the water,’ in our search for life in the universe, and now we have convincing science that validates what we’ve long suspected,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate in Washington. “This is a significant development, as it appears to confirm that water – albeit briny – is flowing today on the surface of Mars.”

These downhill flows, known as recurring slope lineae (RSL), often have been described as possibly related to liquid water. The new findings of hydrated salts on the slopes point to what that relationship may be to these dark features.

The hydrated salts would lower the freezing point of a liquid brine, just as salt on roads here on Earth causes ice and snow to melt more rapidly. Scientists say it’s likely a shallow subsurface flow, with enough water wicking to the surface to explain the darkening.

“We found the hydrated salts only when the seasonal features were widest, which suggests that either the dark streaks themselves or a process that forms them is the source of the hydration. In either case, the detection of hydrated salts on these slopes means that water plays a vital role in the formation of these streaks,” said Lujendra Ojha of the Georgia Institute of Technology (Georgia Tech) in Atlanta, lead author of a report on these findings published Sept. 28 by Nature Geoscience.

Ojha first noticed these puzzling features as a University of Arizona undergraduate student in 2010, using images from the MRO’s High Resolution Imaging Science Experiment (HiRISE). HiRISE observations now have documented RSL at dozens of sites on Mars. The new study pairs HiRISE observations with mineral mapping by MRO’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM).

The spectrometer observations show signatures of hydrated salts at multiple RSL locations, but only when the dark features were relatively wide. When the researchers looked at the same locations and RSL weren’t as extensive, they detected no hydrated salt.

Ojha and his co-authors interpret the spectral signatures as caused by hydrated minerals called perchlorates. The hydrated salts most consistent with the chemical signatures are likely a mixture of magnesium perchlorate, magnesium chlorate and sodium perchlorate.

Some perchlorates have been shown to keep liquids from freezing even when conditions are as cold as minus 94 degrees Fahrenheit (minus 70 Celsius). On Earth, naturally produced perchlorates are concentrated in deserts, and some types of perchlorates can be used as rocket propellant.

Perchlorates have previously been seen on Mars. NASA’s Phoenix lander and Curiosity rover both found them in the planet’s soil, and some scientists believe that the Viking missions in the 1970s measured signatures of these salts. However, this study of RSL detected perchlorates, now in hydrated form, in different areas than those explored by the landers. This also is the first time perchlorates have been identified from orbit.

MRO has been examining Mars since 2006 with its six science instruments.
“The ability of MRO to observe for multiple Mars years with a payload able to see the fine detail of these features has enabled findings such as these: first identifying the puzzling seasonal streaks and now making a big step towards explaining what they are,” said Rich Zurek, MRO project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California.

For Ojha, the new findings are more proof that the mysterious lines he first saw darkening Martian slopes five years ago are, indeed, present-day water.

“When most people talk about water on Mars, they’re usually talking about ancient water or frozen water,” he said. “Now we know there’s more to the story. This is the first spectral detection that unambiguously supports our liquid water-formation hypotheses for RSL.”

The discovery is the latest of many breakthroughs by NASA’s Mars missions.
“It took multiple spacecraft over several years to solve this mystery, and now we know there is liquid water on the surface of this cold, desert planet,” said Michael Meyer, lead scientist for NASA’s Mars Exploration Program at the agency’s headquarters in Washington. “It seems that the more we study Mars, the more we learn how life could be supported and where there are resources to support life in the future.”

There are eight co-authors of the Nature Geoscience paper, including Mary Beth Wilhelm at NASA’s Ames Research Center in Moffett Field, California and Georgia Tech; CRISM Principal Investigator Scott Murchie of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland; and HiRISE Principal Investigator Alfred McEwen of the University of Arizona Lunar and Planetary Laboratory in Tucson, Arizona. Others are at Georgia Tech, the Southwest Research Institute in Boulder, Colorado, and Laboratoire de Planetologie et Geodynamique in Nantes, France.

The iPhone is going to Mars

Communication with Mars and Earth


I am taking my iPhone with me to Mars.


The students working on the Occupy Mars Learning Adventures are coming up with creative ways to simulate how we will communicate with each other on Mars. We are experimenting with custom software and the iPhone 6. Bob Barboza has written custom software taking advantage of artificial intelligence.

Our simulated Mars communication software has to include humanoid robots and students located in different countries from around the world. Microsoft is looking at letting on have some Skype telephone here on Earth. We will take full advance of the new iPad Professional. This is only the beginning. We welcome your comments and suggestions. and

Communications with Earth is relatively straightforward during the half-sol when Earth is above the Martian horizon. NASA and ESA included communications relay equipment in several of the Mars orbiters, so Mars already has communications satellites. While these will eventually wear out, additional orbiters with communication relay capability are likely to be launched before any colonization expeditions are mounted.

The one-way communication delay due to the speed of light ranges from about 3 minutes at closest approach (approximated by perihelion of Mars minus aphelion of Earth) to 22 minutes at the largest possible superior conjunction (approximated by aphelion of Mars plus aphelion of Earth). Real-time communication, such as telephone conversations or Internet Relay Chat, between Earth and Mars would be highly impractical due to the long time lags involved. NASA has found that direct communication can be blocked for about two weeks every synodic period, around the time of superior conjunction when the Sun is directly between Mars and Earth, although the actual duration of the communications blackout varies from mission to mission depending on various factors—such as the amount of link margin designed into the communications system, and the minimum data rate that is acceptable from a mission standpoint. In reality most missions at Mars have had communications blackout periods of the order of a month.

A satellite at the L4 or L5 Earth–Sun Lagrangian point could serve as a relay during this period to solve the problem; even a constellation of communications satellites would be a minor expense in the context of a full colonization program. However, the size and power of the equipment needed for these distances make the L4 and L5 locations unrealistic for relay stations, and the inherent stability of these regions, although beneficial in terms of station-keeping, also attracts dust and asteroids, which could pose a risk. Despite that concern, the STEREO probes passed through the L4 and L5 regions without damage in late 2009.

Recent work by the University of Strathclyde‘s Advanced Space Concepts Laboratory, in collaboration with the European Space Agency, has suggested an alternative relay architecture based on highly non-Keplerian orbits. These are a special kind of orbit produced when continuous low-thrust propulsion, such as that produced from an ion engine or solar sail, modifies the natural trajectory of a spacecraft. Such an orbit would enable continuous communications during solar conjunction by allowing a relay spacecraft to “hover” above Mars, out of the orbital plane of the two planets. Such a relay avoids the problems of satellites stationed at either L4 or L5 by being significantly closer to the surface of Mars while still maintaining continuous communication between the two planets.

We want to communicate with geologists from Mexico

I want to learn how to be a geologist working on the Occupy Mars Learning Adventures

Geo Book Project

Geologist’s Toolkits

Our students are getting excited about studying geology, astronomy and chemistry. We are learning how to become geologists on a simulated Mars mission. One of our projects involves putting our geologist’s lab kits together. Students are getting individualized help by working with three professional geologists. Each student will have access to our new geologist’s library, STEM Lab software and the Geologist Toolkit with “The Geoscience Handbook.”

One of our goals is to provide fifty geologists tool kits to the students that are recruited into the 2015-2016 Occupy Mars Learning Adventure’s programs. We want to do what we can to get students excited about studying STEM (science, technology, engineering and mathematics).   Consider sponsoring a STEM Geologist Toolkit.   Contact:

Did you know?

Planetary science is a dynamic and diverse discipline. Typically, research scientists earn a PhD in a field such as geology, chemistry, astronomy, physics, etc. while focusing their research in that area to planetary or solar system oriented topics.

High School Students Learn About Living on Mars

Astronaut Scott Kelly's Body (A)

NASA, the American space agency, has released an informative infographic, detailing what will happen to astronaut Scott Kelly’s body while he spends a record 12 months in space.

Kelly, along with Russian astronaut Mikhail Kornienko, reached the halfway point of their mission this week, prompting NASA to release the graphic in celebration of his milestone. The two men are to spend a total of 342 days on the International Space Station in order to explore the effects on a human body of spending an extended time in space.

As part of the “Year in Space” program, Kelly’s twin brother, retired astronaut Mike Kelly who has stayed firmly on the earth, is being tested alongside samples periodically gathered from Scott. One of the long-term aims of the experiment is to determine if humans would be able to travel to Mars, which would take approximately 260 days when Earth is at it’s closest approach to the Red Planet. The round trip would take around two and a half years because of the need to wait for the right orbital window for the return journey.

U.S. President Barack Obama has called on the space agency to step up its efforts to reach Earth’s neighbour. “By the mid-2030s, I believe we can send humans to orbit Mars and return them safely to Earth,” Obama said during a 2010 speech at the Kennedy Space Center. “And a landing on Mars will follow. And I expect to be around to see it.”

Among some of the more notable effects and events that Kelly will experience during his year in space include seeing almost 11,000 sunrises and sunsets—compared to the 684 we’ll see on Earth, and that as his discarded feces enter the atmosphere they’ll burn up and look like shooting stars.

Related Articles

Call teachers and students in Mexico: You are invited to our STAR Party with NASA in the USA

Kids Talk Radio STEM STAR Party


Our NASA STEM Classroom at 49,000 Feet

Bob Barboza and Kids Talk Radio Science is Hosting A NASA SOFIA STEM STAR Party

Tuesday, September 15 6:30 p.m. in the Los Altos United Methodist Church Lounge

Astronomer Jerry Larsen and space science and robotic’s educator Bob Barboza will co-host a live teleconversation with two unique astronauts riding NASA’s 747 jumbo jet to the edge of space. On board will be Star Trek’s Nichelle Nichols and Traveling Space Museum’s Ivor Dawson, peering through NASA’s stratospheric observatory for infrared astronomy (SOFIA). Once we connect with them, we will be able to see into areas of the cosmos where new stars are being born. Astronauts of all ages, as well as curious onlookers are encouraged to attend. For more information visit Bob Barboza websites:

Bring your laptops and connect to our NASA 747.  We have free WiFi at the church.

Password: SOFIAParty2015


Los Altos Methodist Church

5950 East Willow Street

Long Beach, CA 90815

Time: 6:30 PM. to 8:00 PM.



  • NASA SOFIA: Photo Essay
  • Space Robots and the Occupy Mars Learning Adventures
  • International Dot Day
  • Astronomy in the Community
  • Hands On Space Telescope Workshop

* STEM (science, technology, engineering and mathematics)

** STEAM++ (science, technology, engineering, visual and performing arts, mathematics, computer languages and foreign languages).

International Dot Day in the USA and Mexico

Each year Bob Barboza creates what he call a STEM dot.  It is using the visual arts to support science.
Each year Bob Barboza creates what he call a STEM dot. It is using the visual arts to support science.

One of the most creative people I know is Peter Reynolds.  He is an artist that inspires me. When he came up with the idea of having an international Dot Day, I loved his idea.   Every draws a circle and you pot whatever you want in that circle.  You can use pencils, pens, paints, crayons or anything else to get your ideas on paper.   If you do a STEM (science, technology, engineering and mathematics) Dot.  I want you to send it to me and I will feature it on Kids Talk Radio Science.

You can send you dot by e-mail to

I want you to send it to me at Kids Talk Radio.

Celebrate Creativity,
Courage & Collaboration!

Imagine the power and potential of millions of people around the world connecting, collaborating, creating and celebrating all that creativity inspires and invites. I hope you will join the growing global community of creativity champions using their talents, gifts and energy to move the world to a better place.

Sign up now and celebrate Dot Day on or around September 15-ish – and be sure to share your news, photos, art and videos with us!

Peter H. Reynolds

Peter H. Reynolds

History of Science and Technology in Mexico

History of Science and Technology: Mexico

This article covers the history of science and technology in Mexico. The Royal and Pontifical University of Mexico, established in 1551, was a hub of intellectual and religious development in Mexico for over a century. During the Mexican Enlightenment, Mexico made rapid progress in science, but when the Mexican War of Independence came along, there was no scientific progress in Mexico. During the end of the 19th century, the process of industrialization began in Mexico, and it made significant progress in science and technology in the 20th century. During the 20th century, new universities and research institutes, such as the National Autonomous University of Mexico, were established in Mexico.

According to the World Bank, Mexico is Latin America’s largest exporter of high-technology goods (High-technology exports are manufactured goods that involve high R&D intensity, such as in aerospace, computers, pharmaceuticals, scientific instruments, and electrical machinery) with $40.7 billion worth of high-technology goods exports in 2012.[1] Mexican high-technology exports accounted for 17% of all manufactured goods in the country in 2012 according to the World Bank.[2]

Early history of science in Mexico

The Caraol, Maya, Chichen Itza, Mexico, ca. 800-900 CE. El Caracol means “snail shell,” and this unusual round northern Maya structure encloses a circular staircase. The building may have been atemple to Kukulkan with an astronomical observatory at the summit.

The Olmec, a Pre-Columbian civilization living in the tropical lowlands of south-central Mexico, calendar system required an advanced understanding of mathematics. The Olmec number system was based on 20 instead of decimal and used three symbols- a dot for one, a bar for five, and a shell-like symbol for zero. The concept of zero is one of the Olmecs’ greatest achievements. It permitted numbers to be written by position and allowed for complex calculations. Although the invention of zero is often attributed to the Mayans, it was originally conceived by the Olmecs.

Mayans symbol for zero

To predict planting and harvesting times, early peoples studied movements of the sun, stars, and planets. They used this information to make calendars. The Aztecs created two calendars one for farming and one for religion. The farming calendar let them know when to plant and to harvest crops. An Aztec calendar stone dug up in Mexico City in 1790 includes information about the months of the year and pictures the sun god at the center.

The Aztec Sun Stone, also called the Aztec Calendar Stone, on display at the National Museum of Anthropology, Mexico City.

After the Viceroyalty of New Spain was founded, the Spanish brought the scientific culture that dominated Spain to the Viceroyalty of New Spain.[3]

The Franciscan order founded the first school of higher learning in the Americas, the Colegio de Santa Cruz de Tlatelolco in 1536, at the site of an Aztec school.[4]

The municipal government (cabildo) of Mexico City formally requested the Spanish crown to establish a university in 1539.[5] The Royal and Pontifical University of Mexico (Real y Pontificia Universidad de México) was established in 1551. The university was administered by the clergy and it was the official university of the empire. It provided quality education for the people, and it was a hub of intellectual and religious development in the region. It taught subjects such as physics and mathematics from the perspective of Aristotelian philosophy. Augustinian philosopher Alonso Gutiérrez in 1553 he became the first professor of the University of Mexico. He wrote Physica speculatio, America’s first scientific text, in 1557. By the late 18th century, the university had trained 1,162 doctors, 29,882 bachelors, and many lawyers.[3]

Educated by the Jesuits in Mexico Carlos de Sigüenza y Góngora displayed an astonishing proficiency in science and mathematics. During the late 17th century he won the chair of mathematics and astronomy at the University of Mexico. Sigüenza challenged the official doctrine that comets were divine portents ofdisaster and argued for their natural origin. He is considered the first scientist of colonial Mexico to question the scholasticism that permeated the university and most of society.

Science during the Mexican Enlightenment

Andrés Manuel del Río was the first person to isolate vanadium.

During the Mexican Enlightenment, science can be divided into the four periods: the early period (from 1735 to 1767), the Creole period (from 1768 to 1788), the official or Spanish period (from 1789 to 1803) and the period of synthesis (from 1804 to the beginning of the Mexican independence movement in 1810).[6]

During the 16th and 17th centuries, modern science developed in Europe but it lagged behind in Mexico. The new ideas developed in science in Europe were not important in Mexico.[7] The 1767 expulsion of Jesuits, who had introduced the new ideas in Mexico, helped to antagonize the Creoles and also promoted national feelings among Mexicans.[6][8] After the expulsion, self-taught Creoles were the first scientists in Mexico. Later on, they were joined by the Spanish scientists, and they did research, teaching, publishing, and translating texts. The ideas of Francis Bacon and René Descartes were freely discussed at seminars, which caused scholasticism to lose strength. During the Mexican Enlightenment, Mexico made progress in science. Progress were made in subjects such as astronomy, engineering, etc. In 1792 the Seminary of Mining was established. Later it became College of Mining, in which the first modern physics laboratory in Mexico was established.[6]

Famous scientists of the Enlightenment included José Antonio de Alzate y Ramírez and Andrés Manuel del Río.[6] Río discovered the chemical element vanadium in 1801.[9]

Science after the Mexican War of Independence

The Mexican War of Independence brought an end to Mexico’s scientific progress. The Royal and Pontifical University of Mexico closed in 1833. For many years, there were no scientific activities in Mexico.[6] The Royal and Pontifical University of Mexico was definitively shut down in 1865.[10]

During the end of the nineteenth century, the process of industrialization began in Mexico. Under the influence of positivists and scientific thinkers, the government assisted in public education. In 1867 Gabino Barreda, a student of Auguste Comte, was charged with the commission aimed at reforming education. Subjects such as physics, chemistry, and mathematics were included into the secondary school curriculum. National Preparatory School was established. The influence of positivists led to a renaissance of scientific activity in Mexico.[11]

General Manuel Mondragon, invented the first automatic rifle the Mondragón rifle during this time.

Science & Technology in the 20th Century

The Engineer Eduardo Molina director of Mexicos city aqueduct. Mural by Diego Rivera.

The Tlahuizcalpan building of the Faculty of Sciences of the National Autonomous University of Mexico.

During the 20th century, Mexico made significant progress in science and technology. New universities and research institutes were established. The National Autonomous University of Mexico (Universidad Nacional Autónoma de México, UNAM) was officially established in 1910,[12] and the university become one of the most important institutes of higher learning in Mexico.[10] UNAM provides world class education in science, medicine, and engineering.[13] Many scientific institutes and new institutes of higher learning, such as National Polytechnic Institute (founded in 1936),[14] were established during the first half of the 20th century. Most of the new research institutes were created within UNAM. Twelve institutes were integrated into UNAM from 1929 to 1973.[15]

In the 1930s Manuel Sandoval Vallartaa Mexican physicist worked on Cosmic ray research and by the 1943 to 1946, he divided his time between MIT and UNAM as a full-time professor.

Part of the brain and nervous system exhibition at the Universum (UNAM)

On August 31, 1946, Guillermo González Camarena sent his first color transmission from his lab in the offices of The Mexican League of Radio Experiments, at Lucerna St. #1, in Mexico City. The video signal was transmitted at a frequency of 115 MHz. and the audio in the 40 meter band. González Camarena was a Mexican engineer who was the inventor of a color-wheel type of color television, and who also introduced color television to Mexico.

Rodolfo Neri Vela is the first and only Mexican, and the second Latin-American to have traveled to space.

In 1959, the Mexican Academy of Sciences (Academia Mexicana de Ciencias) was established as a non-governmental, non-profit organization of distinguished scientists. The Academy has grown in membership and influence, and it represents a strong voice of scientists from different fields, mainly in science policy.[16]

Alfa Planetarium this institution was created by ALFA (Mexico) in 1978 to promote science and technology in Latin America

By 1960, science was institutionalized in Mexico. It was viewed as a legitimate endeavor by the Mexican society.[15]

In 1961, the Center for Research and Advanced Studies of the National Polytechnic Institute was established as a center for graduate studies in subjects such as biology, mathematics, and physics. In 1961, the institute began its graduate programs in physics and mathematics and schools of science were established in Mexican states of Puebla, San Luis Potosí, Monterrey, Veracruz, and Michoacán. The Academy for Scientific Research was established in 1968 and the National Council of Science and Technology was established in 1971.[15]

In 1995 Mario J. Molina became the first Mexican citizen to win the Nobel Prize in science.

Ricardo Miledi, one of the ten most quoted neuro-biologists of all time, was born in Mexico, D.F. in 1927. His career in science began in 1955 when, just before graduating in Medicine at the Universidad Nacional Autónoma de Mexico (UNAM), he joined one of the most active research groups in his country, part of the Instituto Nacional de Cardiología (the National Institute of Cardiology).

The AEM agency aims to coordinate the space activities that are performed in the country, such as those developed around the Large Millimeter Telescope in the state of Puebla.

Many of Professor Miledi´s studies and breakthroughs in Neurobiology, especially those related to the mechanisms of synaptic and neuromuscular transmission, are considered to be classic throughout the world. Over 450 publications are the tangible product of forty years of research devoted in the main to the primary functions of the nervous system: the transmission of information between cells. He has been a member of the Royal Society of London since 1980, and entered the American Academy of Arts and Sciences in 1986. In 1999 Miledi was awarded with the Prince of Asturias Award for Technical and Scientific Research. He has been Professor of Biophysics at the University of London and distinguished professor of the University of California since 1984. He also leads a neurobiology laboratory in UNAM in Querétaro, México.[17]

In 1985 Rodolfo Neri Vela became the first Mexican citizen to enter space as part of the STS-61-B mission.[18]

In 1995 Mexican chemist Mario J. Molina shared the Nobel Prize in Chemistry with Paul J. Crutzen, and F. Sherwood Rowland for their work in atmospheric chemistry, particularly concerning the formation and decomposition of ozone.[19] Molina, an alumnus of UNAM, became the first Mexican citizen to win the Nobel Prize in science.[20]

The Large Millimeter Telescope was inaugurated on 22 November 2006. It is the world’s largest and most sensitive single-aperture telescope in its frequency range, built for observing radio waves in the wavelengths from approximately 0.85 to 4 mm. Located on top of the Sierra Negra. It is a binational Mexican (70%) – American (30%) joint project.

In 1962, the National Commission of Outer Space (Comisión Nacional del Espacio Exterior, CONNE) was established, but was dismantled in 1977. On July 30, 2010 the law to create the Agencia Espacial Mexicana (AEM) was published. It is now in the process of defining the National Space Policy and its program of activities. Robotics is a new area under development in Mexico, the Mexone Robot is one of the most advanced robot designs in the world.[21]

Science & Technology in the 21st Century

Mexico science advancements in Latin America

Austrade predicts Mexico’s IT spending will grow at a compound annual growth rate of 11 per cent over 2011-2015.[22]

Based on the information managed by Scopus, a bibliographic database for science, the Spanish web portal SCImago places Mexico at 28th in country scientific ranking with 82,792 publications, and 34th considering its value of 134 for the h-index. Both positions are computed for the period 1996-2007.

The electronics industry of Mexico has grown enormously within the last decade. In 2007 Mexico surpassed South Korea as the second largest manufacturer of televisions, and in 2008 Mexico surpassed China, South Korea and Taiwan to become the largest producer of smartphones in the world. There are almost half a million (451,000) students enrolled in electronics engineering programs.